GSM Technology


Network structure


The network behind the GSM seen by the customer is large and complicated in order to provide all of the services which are required. It is divided into a number of sections and these are each covered in separate articles.

* the Base Station Subsystem (the base stations and their controllers).
* the Network and Switching Subsystem (the part of the network most similar to a fixed network). This is sometimes also just called the core network.
* the GPRS Core Network (the optional part which allows packet based Internet connections).
* all of the elements in the system combine to produce many GSM services such as voice calls and SMS.

Subscriber Identity Module (SIM)


One of the key features of GSM is the Subscriber Identity Module, commonly known as a SIM card. The SIM is a detachable smart card containing the user's subscription information and phone book. This allows the user to retain his or her information after switching handsets. Alternatively, the user can also change operators while retaining the handset simply by changing the SIM. Some operators will block this by allowing the phone to use only a single SIM, or only a SIM issued by them; this practice is known as SIM locking, and is illegal in some countries.

In Australia, North America and Europe many operators lock the mobiles they sell. This is done because the price of the mobile phone is typically subsidised with revenue from subscriptions, and operators want to try to avoid subsidising competitor's mobiles. A subscriber can usually contact the provider to remove the lock for a fee, utilize private services to remove the lock, or make use of ample software and websites available on the Internet to unlock the handset themselves. While most web sites offer the unlocking for a fee, some do it for free. The locking applies to the handset, identified by its International Mobile Equipment Identity (IMEI) number, not to the account (which is identified by the SIM card).

In some countries such as Bangladesh, Belgium, Costa Rica, India, Indonesia, Malaysia, and Pakistan, all phones are sold unlocked. However, in Belgium, it is unlawful for operators there to offer any form of subsidy on the phone's price. This was also the case in Finland until April 1, 2006, when selling subsidized combinations of handsets and accounts became legal, though operators have to unlock phones free of charge after a certain period (at most 24 months).

GSM security

GSM was designed with a moderate level of security. The system was designed to authenticate the subscriber using a pre-shared key and challenge-response. Communications between the subscriber and the base station can be encrypted. The development of UMTS introduces an optional USIM, that uses a longer authentication key to give greater security, as well as mutually authenticating the network and the user - whereas GSM only authenticates the user to the network (and not vice versa). The security model therefore offers confidentiality and authentication, but limited authorization capabilities, and no non-repudiation. GSM uses several cryptographic algorithms for security. The A5/1 and A5/2 stream ciphers are used for ensuring over-the-air voice privacy. A5/1 was developed first and is a stronger algorithm used within Europe and the United States; A5/2 is weaker and used in other countries. Serious weaknesses have been found in both algorithms: it is possible to break A5/2 in real-time with a ciphertext-only attack, and in February 2008, Pico Computing, Inc revealed its ability and plans to commercialize FPGAs that allow A5/1 to be broken with a rainbow table attack.[13] The system supports multiple algorithms so operators may replace that cipher with a stronger one.

0 comments: